Factorization Techniques for Predicting Student Performance

نویسندگان

  • Nguyen Thai-Nghe
  • Lucas Drumond
  • Tomáš Horváth
  • Artus Krohn-Grimberghe
  • Alexandros Nanopoulos
چکیده

Recommender systems are widely used in many areas, especially in ecommerce. Recently, they are also applied in e-learning for recommending learning objects (e.g. papers) to students. This chapter introduces state-of-the-art recommender system techniques which can be used not only for recommending objects like tasks/exercises to the students but also for predicting student performance. We formulate the problem of predicting student performance as a recommender system problem and present matrix factorization methods, which are currently known as the most effective recommendation approaches, to implicitly take into account the prevailing latent factors (e.g. “slip” and “guess”) for predicting student performance. As a learner’s knowledge improves over time, too, we propose tensor factorization methods to take the temporal effect into account. Finally, some experimental results and discussions are provided to validate the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization Models for Forecasting Student Performance

Predicting student performance, one of the tasks in educational data mining, has been taken into account recently [Toscher and Jahrer 2010; Yu et al. 2010; Cetintas et al. 2010; Thai-Nghe et al. 2011]. It was selected as a challenge task for the KDD Cup 2010 [Koedinger et al. 2010]. Concretely, predicting student performance is the task where we would like to know how the students learn (e.g. g...

متن کامل

Matrix and Tensor Factorization for Predicting Student Performance

Recommender systems are widely used in many areas, especially in e-commerce. Recently, they are also applied in technology enhanced learning such as recommending resources (e.g. papers, books,...) to the learners (students). In this study, we propose using state-of-the-art recommender system techniques for predicting student performance. We introduce and formulate the problem of predicting stud...

متن کامل

Predicting Student Performance in Solving Parameterized Exercises

In this paper, we compare pioneer methods of educational data mining field with recommender systems techniques for predicting student performance. Additionally, we study the importance of including students’ attempt time sequences of parameterized exercises. The approaches we use are Bayesian Knowledge Tracing (BKT), Performance Factor Analysis (PFA), Bayesian Probabilistic Tensor Factorization...

متن کامل

Multi-Relational Factorization Models for Predicting Student Performance

Predicting student performance (PSP) is an important task in educational data mining, where we can give the students early feedbacks to help them improving their study results. A good and reliable model which accurately predicts the student performance may replace the current standardized tests, thus, reducing the pressure on teaching and learning for examinations as well as saving a lot of tim...

متن کامل

Parameterized Exercises in Java Programming: using Knowledge Structure for Performance Prediction

In this paper, we study the effect of using domain knowledge structure on predicting student performance with parameterized Java programming exercises. Domain knowledge structure defines connections between elementary knowledge items. While known to be beneficial in general, it has not been used to predict performance. We compare five different approaches for this purpose: Bayesian Knowledge Tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011